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Abstract. The solar chromosphere consists of three classes which contribute
differently to ultraviolet radiation reaching the earth. We describe a data
set of solar images, means of segmenting the images into the constituent
classes, and a novel high-level representation for compact objects based on
a triangulated spatial ‘membership function’. Such representations are fitted
in a variable-dimension Markov chain Monte Carlo scheme.
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1 Introduction

The solar atmosphere is comprised of several features having various charac-
teristics, and distinct physical origin. The most apparent are active regions,
which are associated with sunspots in the photosphere and plages in the chro-
mosphere. These plages can be quite large in extent, and show themselves by
their strong magnetic field and altered light emissions. To a lesser extent, so
does the chromospheric network, which is an evenly-distributed cell-patterned
web of enhanced activity. The remainder of the surface shows only ordinary
fluctuations and is termed quiet sun. See Figure 1 and Zirin (1988) for more
on chromospheric features.
The three classes contribute differently to the ultraviolet radiation reach-

ing Earth’s upper atmosphere, with the plages and magnetic network giving
the largest contribution. This radiation cannot be sensed directly from the
ground but the features giving rise to it can be; they are used as proxy inputs
to models of solar irradiance. These models are crucial to understanding phe-
nomena such as global warming and photochemical decomposition processes
in the upper atmosphere; see Withbroe (1994).
Further, much can be learned about solar irradiance by relating irradi-

ance changes observed via satellite to region evolution identified in spatially-
resolved images. Current understanding of these effects, and of plage evo-
lution in general, is of a qualitative sort and a more refined description of
anticipated plage shapes and the evolution of plage regions would be of value.
The features studied here, as well as related photospheric phenomena, are

observed by many instruments on Earth and a few in space. The primary
source of data for this study is the set of CaII K full-disk spectroheliograms
that has been collected daily at Sacramento Peak National Solar Observatory
from the mid-sixties onward. The images are recorded on photographic film,
an interval of which (from the mid-eighties forward) has been digitized to
2K×2K pixels.



Fig. 1. A chromospheric image from 15 July 1992 shows both a decayed plage pair
in the lower-right quadrant of the sun and a younger, more concentrated plage at
upper left; a detail image of the latter is in the second panel

Currently, scientists typically either apply a threshold across the flattened
image to determine plage areas, or manually surround the plages with poly-
gons. The first method, while simple and objective, ignores all spatial infor-
mation that is available. The second method clearly uses a large amount of
side information possessed by the scientists, but is also highly subjective, dif-
ficult to even describe, and hard to repeat. We will describe a more objective
and automatic procedure based on a hierarchical model of image features and
formation.
We introduce our paper with an overview of the model and method we have

used. While the Bayesian framework is not universally appropriate for infer-
ence problems, in the situation at hand the prior information is so apparent
that approximating it is preferred to neglecting it. So, following Grenander
(1991, e.g.), we establish a Bayesian formalism for a hierarchical representa-
tion of plages in three levels.
With each pixel of the observed image y we associate a small-integer label

determining its class; these labels are x. The labelling in x captures the
information needed to, for example, determine how much of the chromosphere
is plage. The plages themselves are large-scale phenomena which are not well-
captured by pixel-level rules, so their representation should bind nearby plage
sites into a cluster of heightened activity. Furthermore, even experts have
uncertainty in precisely delineating plage regions, so the plage description
should express this equivocation. Accordingly, the plage is represented by a
membership function h across the image space, with large values indicating
increased confidence that a site is plage. To combine these quantities, let there
be a Markov relationship between the three levels of the stochastic model so
that

P (h,x,y) = P (h)P (x |h)P (y |x) (1)

The interpretation is that an underlying, large-scale activity pattern h occurs,
giving rise to a fine-scale pattern x. The latter is then responsible for the
observed image y. In the next section we detail the model; then we describe
the scheme for inference and provide some representative results.



2 Image representation and modelling

Denote a generic spatial position by s = [s1 s2] ∈ N̄ = [0, 1]
2
. Observations

are made at a lattice of sites N ⊂ N̄ . The class labels x = {xs}s∈N take
values in the set {P, N, B}, while entries in the corresponding observation y
are each real-valued. We work from the data backward in defining the factors
of (1).
Conditioned on the labelling, the likelihood factors as

P (y |x) =
∏

P (ys |xs) . (2)

Labelled images supplied by scientists suggest the three densities P (y |x) are
lognormal, so, up to an additive universal constant,

− logP (y |x) =
∑
s∈N

(
(log ys − µxs)

2

2σ2xs
+ log σxs + log ys

)
. (3)

For P (x |h), we use the “Potts model”, an ordinary Markov random field
smoothness prior (Besag, 1974), modified so that the membership function
h(s) ∈ [0, 1] favours the event {xs = P}:

− logP (x |h) = Kh + β
∑
s∼s′

1(xs �= xs′) + α
∑
s∈N

|1(xs = P)− h(s)| . (4)

The relation s ∼ s′ is true for “neighbouring” sites in N . On our rectangular
lattice, sites are neighbours if they adjoin vertically, horizontally, or diago-
nally. Here α ≥ 0 indicates the influence of h, β ≥ 0 favours agreement among
labels, and Kh is an appropriate normalizing constant.
To represent a plage, or a cluster of related plages, we propose a tent-like

structure defined by a triangulated planar graph

G = (V, E, h) (5)

V ⊂ N̄ a vertex set

E ⊂ N̄2 an edge relation

h : V → [0, 1] a height function

The height function extends to all of N̄ by linear interpolation across the
faces of the pyramids. This structure models the “degree of membership” of
a given pixel in the plage class and allows the binding of nearby plage regions
into one coherent object. We note that, if the height function is thresholded at
a given level, the resulting shape is a cluster of regions bounded by polygons
— the same way scientists currently delimit plage regions manually. See the
diagram below.
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To define a probability distribution on membership functions, we generate
each as the interpolated version of the Delaunay triangulation of iid points,
uniform in N̄ . These points comprise V , and E is generated mechanically
as the triangulation of V . Heights in [0, 1] are then assigned independently
to the members of V to form tie-points. The probability density of such a
membership function is induced by the one on V :

P (h) = Z−1e−γ card(Vh) . (6)

A computational advantage of this scheme is that additions, deletions, and
adjustments of one vertex have a local effect on the triangulation. Also, the
penalty in log-probability paid by joining two separated graphs is the sum of
component penalties, so that separated plages co-exist independently.

3 Inference

This describes the “synthesis problem”; the complementary “analysis prob-
lem” focuses on the posterior

P (h,x |y) = P (h,x,y)/P (y) ∝ P (h,x,y) .

Sampling from this distribution is a sufficient basis for any other inference
scheme; we have in mind principally MAP. Adopting the well-known Markov
chain Monte Carlo outlook (Besag et al. , 1995, for example), we sample
alternately from x and h. The former is easily accomplished via the well-
known Gibbs sampler, so we concentrate on updates to h with x held fixed.
One technical difficulty is the normalizing constant Kh which figures in the

posterior. Existing Monte Carlo techniques for estimating Kh (Potamianos &
Goutsias, 1997) simply involve sampling from P (x |h), but the computation
involved for this is too large to justify the effort. At present we have assumed
that the variation of Kh with respect to h is negligible compared to the
designed variation in P (h,x,y), leading to an approximate posterior π(h,x)
with negative log-probability (excluding constant terms)

β
∑
s∼s′

1(xs �= xs′ ) + α
∑
s∈N

|1(xs = P)− h(s)|+

∑
s∈N

(
(log ys − µxs)

2

2σ2xs
+ log σxs

)
+ γ card(Vh) (7)

having a minimum at (ĥ, x̂). MAP inference proceeds, as noted, by alternately
varying x and h while decreasing a temperature parameter.
Updates of h correspond to altering the vertex list, and are done with simple

Metropolis-Hastings steps. Such a step proposes a new state h′, computes
ρ(h, h′) := π(h′,x)/π(h,x), and probabilistically accepts or rejects h′ largely
on this basis; this results in a Markov transition kernel Q(v, dv′) on the
composite vertex-list set V = ∪kVk. If Q is designed properly, it has the
posterior π as its stationary distribution. Beyond the obvious restrictions
that Q be aperiodic and irreducible, it is sufficient that Q maintains detailed
balance: under π, the mass moving directly from A ⊆ V to B equals that
moving in the reverse direction.
First we describe a set of operators complete enough to ensure irreducibil-

ity. A vertex move operator M chooses a vertex at random and displaces it
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Fig. 2. Plage probability; mean inferred membership function; sample membership
function

randomly. A vertex raise operator R raises or lowers a vertex at random. To
allow movement between the constituent spaces of V , we have add operators
Ak, and corresponding kill operators A′k, which move back and forth between
Vk and Vk+1.
Next, we define a transition kernel Q on the basis of these operators; this

kernel is a “hybrid sampler” composed of each of the three move-types (M ,
R, A/A′). In each epoch in the simulation, one such move-type is chosen
at random. Ensuring detailed balance within each move-type yields detailed
balance in the superposition. Obtaining detailed balance in types M and R
is trivial provided the distribution of the additive displacement is symmetric.
(Modular addition will eliminate edge conditions.) Operators M and R are
accepted with probability min(1, ρ(h, h′)).
Obtaining detailed balance of Ak, A

′
k is more complex because the flow

between two different Euclidean spaces must be equalized. Following recent
work of P. Green (1995), we find the chance of accepting a proposed deletion
of v∗ via A′k should be the lesser of unity and

ρ(h, h′)×
P (select Ak)

P (select A′k)
×

pv(v
∗)

1/(k + 1)
. (8)

(Here pv is a density used to choose a new point for an add operation; in
practice it is used to focus attention on interesting parts of the image.) The
intuition is simple: the more likely it is to attempt deletion, the less likely
we must be to accept it. The more likely it is to add v∗ back in, the more
willing we are to delete it. The factor of k+1 comes from the random choice
of which vertex to delete: when v∗ is added via Ak, there is one chance in
k + 1 that a subsequent application of A′k will consider v∗ for deletion.

4 Computational aspects and results

Initialization is important since a small feature may become hidden in a
large triangle so that that π is not increased by any single vertex addition.
The initialization procedure should therefore ensure locality of the effects
of changes. A procedure that has proven effective is to initially replace the
term of π enforcing agreement between h and the plage probability with one



penalizing per-triangle inhomogeneity:

∑
T

|T | qT (1− qT ) , with qT := |T |−1
∑
s∈T

1(xs = P)

and |T | the number of pixels in triangle T . The modified criterion subdivides
the image during an initial phase of 1000 epochs; then it is gradually replaced
by the final criterion in a secondary stage twice this length. By the end of
the second stage, a satisfactory basin of π(h,x) has been found and the
Metropolis iteration proceeds as described above.
Finally, to speed the sampling process the indicator 1(xs = P) above is

replaced with its expectation P (xs = P | ys). This is analogous to the use of
conditional expectation in the ICE algorithm of A. Owen (1986) and allows
the sampler to directly access the uncertainty in the label, instead of reacting
to its probabilistic fluctuations as Gibbs iterations proceed.
Sample results for fitting a rather complex plage pair are shown in Figure 2.

Fits with γ = 2, α = 0.4 were obtained from a total of 30 000 Metropolis pro-
posals taking 170 seconds of computation time on a Sun Ultrasparc. Roughly
175 proposals/sec are made by exploiting the significant cancellation in the
quotient ρ(h, h′): only the changed triangles need be reconsidered. As de-
sired, the membership function has suppressed the small-scale features and
identified the two main objects and their principal outliers.
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